Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Geophys Res Lett ; 49(7): e2021GL097472, 2022 Apr 16.
Article in English | MEDLINE | ID: covidwho-1773925

ABSTRACT

This study investigates selected secondary atmospheric responses to the widely reported emission change attributed to COVID-19 lockdowns in the highly polluted Indo-Gangetic Plain (IGP) using ground-based measurements of trace gases and particulate matter. We used a chemical box-model to show that production of nighttime oxidant, NO3, was affected mainly by emission decrease (average nighttime production rates 1.2, 0.8 and 1.5 ppbv hr-1 before, during and relaxation of lockdown restrictions, respectively), while NO3 sinks were sensitive to both emission reduction and seasonal variations. We have also shown that the maximum potential mixing ratio of nitryl chloride, a photolytic chlorine radical source which has not been previously considered in the IGP, is as high as 5.5 ppbv at this inland site, resulting from strong nitrate radical production and a potentially large particulate chloride mass. This analysis suggests that air quality measurement campaigns and modeling explicitly consider heterogeneous nitrogen oxide and halogen chemistry.

2.
Elementa ; 9(1), 2021.
Article in English | Scopus | ID: covidwho-1215179

ABSTRACT

The coronavirus-19 (COVID-19) pandemic led to government interventions to limit the spread of the disease which are unprecedented in recent history;for example, stay at home orders led to sudden decreases in atmospheric emissions from the transportation sector. In this review article, the current understanding of the influence of emission reductions on atmospheric pollutant concentrations and air quality is summarized for nitrogen dioxide (NO2), particulate matter (PM2.5), ozone (O3), ammonia, sulfur dioxide, black carbon, volatile organic compounds, and carbon monoxide (CO). In the first 7 months following the onset of the pandemic, more than 200 papers were accepted by peer-reviewed journals utilizing observations from ground-based and satellite instruments. Only about one-third of this literature incorporates a specific method for meteorological correction or normalization for comparing data from the lockdown period with prior reference observations despite the importance of doing so on the interpretation of results. We use the government stringency index (SI) as an indicator for the severity of lockdown measures and show how key air pollutants change as the SI increases.The observed decrease of NO2 with increasing SI is in general agreement with emission inventories that account for the lockdown. Other compounds such as O3, PM2.5, and CO are also broadly covered. Due to the importance of atmospheric chemistry on O3 and PM2.5 concentrations, their responses may not be linear with respect to primary pollutants. At most sites, we found O3 increased, whereas PM2.5 decreased slightly, with increasing SI. Changes of other compounds are found to be understudied. We highlight future research needs for utilizing the emerging data sets as a preview of a future state of the atmosphere in a world with targeted permanent reductions of emissions. Finally, we emphasize the need to account for the effects of meteorology, emission trends, and atmospheric chemistry when determining the lockdown effects on pollutant concentrations. Copyright: © 2021 The Author(s).

SELECTION OF CITATIONS
SEARCH DETAIL